Abstraction and Relational learning

نویسندگان

  • Charles Kemp
  • Alan Jern
چکیده

ion and relational learning Charles Kemp & Alan Jern Department of Psychology Carnegie Mellon University {ckemp,ajern}@cmu.edu Abstract Most models of categorization learn categories defined by characteristic features but some categories are described more naturally in terms of relations. We present a generative model that helps to explain how relational categories are learned and used. Our model learns abstract schemata that specify the relational similarities shared by instances of a category, and our emphasis on abstraction departs from previous theoretical proposals that focus instead on comparison of concrete instances. Our first experiment suggests that abstraction can help to explain some of the findings that have previously been used to support comparison-based approaches. Our second experiment focuses on one-shot schema learning, a problem that raises challenges for comparison-based approaches but is handled naturally by our abstraction-based account. Categories such as family, sonnet, above, betray, and imitate differ in many respects but all of them depend critically on relational information. Members of a family are typically related by blood or marriage, and the lines that make up a sonnet must rhyme with each other according to a certain pattern. A pair of objects will demonstrate “aboveness” only if a certain spatial relationship is present, and an event will qualify as an instance of betrayal or imitation only if its participants relate to each other in certain ways. All of the cases just described are examples of relational categories. This paper develops a computational approach that helps to explain how simple relational categories are acquired. Our approach highlights the role of abstraction in relational learning. Given several instances of a relational category, it is often possible to infer an abstract representation that captures what the instances have in common. We refer to these abstract representations as schemata, although others may prefer to call them rules or theories. For example, a sonnet schema might specify the number of lines that a sonnet should include and the rhyming pattern that the lines should follow. Once a schema has been acquired it can support several kinds of inferences. A schema can be used to make predictions about hidden aspects of the examples already observed—if the final word in a sonnet is illegible, the rhyming pattern can help to predict the identity of this word. A schema can be used to decide whether new examples (e.g. new poems) qualify as members of the category. Finally, a schema can be used to generate novel examples of a category (e.g. novel sonnets). Most researchers would agree that abstraction plays some role in relational learning, but Gentner [1] and other psychologists have emphasized the role of comparison instead [2, 3]. Given one example of a sonnet and the task of deciding whether a second poem is also a sonnet, a comparison-based approach might attempt to establish an alignment or mapping between the two. Approaches that rely on comparison or mapping are especially prominent in the literature on analogical reasoning [4, 5], and many of these approaches can be viewed as accounts of relational categorization [6]. For example, the problem of deciding whether two systems are analogous can be formalized as the problem of deciding whether these systems are instances of the same relational category. Despite some notable exceptions [6, 7], most accounts of analogy focus on comparison rather than abstraction, and suggest that “analogy passes from one instance of a generalization to another without pausing for explicit induction of the generalization” (p 95) [8].Most models of categorization learn categories defined by characteristic features but some categories are described more naturally in terms of relations. We present a generative model that helps to explain how relational categories are learned and used. Our model learns abstract schemata that specify the relational similarities shared by instances of a category, and our emphasis on abstraction departs from previous theoretical proposals that focus instead on comparison of concrete instances. Our first experiment suggests that abstraction can help to explain some of the findings that have previously been used to support comparison-based approaches. Our second experiment focuses on one-shot schema learning, a problem that raises challenges for comparison-based approaches but is handled naturally by our abstraction-based account. Categories such as family, sonnet, above, betray, and imitate differ in many respects but all of them depend critically on relational information. Members of a family are typically related by blood or marriage, and the lines that make up a sonnet must rhyme with each other according to a certain pattern. A pair of objects will demonstrate “aboveness” only if a certain spatial relationship is present, and an event will qualify as an instance of betrayal or imitation only if its participants relate to each other in certain ways. All of the cases just described are examples of relational categories. This paper develops a computational approach that helps to explain how simple relational categories are acquired. Our approach highlights the role of abstraction in relational learning. Given several instances of a relational category, it is often possible to infer an abstract representation that captures what the instances have in common. We refer to these abstract representations as schemata, although others may prefer to call them rules or theories. For example, a sonnet schema might specify the number of lines that a sonnet should include and the rhyming pattern that the lines should follow. Once a schema has been acquired it can support several kinds of inferences. A schema can be used to make predictions about hidden aspects of the examples already observed—if the final word in a sonnet is illegible, the rhyming pattern can help to predict the identity of this word. A schema can be used to decide whether new examples (e.g. new poems) qualify as members of the category. Finally, a schema can be used to generate novel examples of a category (e.g. novel sonnets). Most researchers would agree that abstraction plays some role in relational learning, but Gentner [1] and other psychologists have emphasized the role of comparison instead [2, 3]. Given one example of a sonnet and the task of deciding whether a second poem is also a sonnet, a comparison-based approach might attempt to establish an alignment or mapping between the two. Approaches that rely on comparison or mapping are especially prominent in the literature on analogical reasoning [4, 5], and many of these approaches can be viewed as accounts of relational categorization [6]. For example, the problem of deciding whether two systems are analogous can be formalized as the problem of deciding whether these systems are instances of the same relational category. Despite some notable exceptions [6, 7], most accounts of analogy focus on comparison rather than abstraction, and suggest that “analogy passes from one instance of a generalization to another without pausing for explicit induction of the generalization” (p 95) [8].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abstraction and Generalization in Reinforcement Learning: A Summary and Framework

ion and Generalization in Reinforcement Learning: A Summary and Framework Marc Ponsen, Matthew E. Taylor, and Karl Tuyls 1 Universiteit Maastricht, Maastricht, The Netherlands {m.ponsen,k.tuyls}@maastrichtuniversity.nl 2 The University of Southern California, Los Angeles, CA [email protected] Abstract. In this paper we survey the basics of reinforcement learning, generalization and abstraction. W...

متن کامل

Relational State Abstractions for Reinforcement Learning

Reinforcement learning deals with learning optimal or near optimal policies while interacting with an external environment. The applicability of reinforcement learning has been limited by large search spaces and by its inability to re-use previously learned policy on other, although similar, problems. A relational representation can be used to alleviate both problems. In particular, this paper ...

متن کامل

Conceptual Clustering in Structured Databases: A Practical Approach

Many machine-learning (either supervised or unsupervised) techniques assume that data present themselves in an attribute-value form. But this formalism is largely insufficient to account for many applications. Therefore, much of the ongoing research now focuses on first-order learning systems. But complex formalisms lead to high computational complexities. On the other hand, most of the current...

متن کامل

Learning and Model-Checking Networks of I/O Automata

We introduce a new statistical relational learning (SRL) approach in which models for structured data, especially network data, are constructed as networks of communicating finite probabilistic automata. Leveraging existing automata learning methods from the area of grammatical inference, we can learn generic models for network entities in the form of automata templates. As is characteristic fo...

متن کامل

Varieties of sameness: the impact of relational complexity on perceptual comparisons

The fundamental relations that underlie cognitive comparisons—“same” and “different”—can be defined at multiple levels of abstraction, which vary in relational complexity. We compared response times to decide whether or not two sequentially-presented patterns, each composed of two pairs of colored squares, were the same at three levels of abstraction: perceptual, relational, and system (higher ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009